Description:‘A Concise Introduction to the Theory of Integration’ was once a best-selling Birkhäuser title which published 3 editions. This manuscript is a substantial revision of the material. Chapter one now includes a section about the rate of convergence of Riemann sums. The second chapter now covers both Lebesgue and Bernoulli measures, whose relation to one another is discussed. The third chapter now includes a proof of Lebesgue's differential theorem for all monotone functions. This is a beautiful topic which is not often covered. The treatment of surface measure and the divergence theorem in the fifth chapter has been improved. Loose ends from the discussion of the Euler-MacLauren in Chapter I are tied together in Chapter seven. Chapter eight has been expanded to include a proof of Carathéory's method for constructing measures; his result is applied to the construction of Hausdorff measures. The new material is complemented by the addition of several new problems based on that material.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Essentials of Integration Theory for Analysis (Graduate Texts in Mathematics Book 262). To get started finding Essentials of Integration Theory for Analysis (Graduate Texts in Mathematics Book 262), you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
—
Format
PDF, EPUB & Kindle Edition
Publisher
—
Release
—
ISBN
1461411351
Essentials of Integration Theory for Analysis (Graduate Texts in Mathematics Book 262)
Description: ‘A Concise Introduction to the Theory of Integration’ was once a best-selling Birkhäuser title which published 3 editions. This manuscript is a substantial revision of the material. Chapter one now includes a section about the rate of convergence of Riemann sums. The second chapter now covers both Lebesgue and Bernoulli measures, whose relation to one another is discussed. The third chapter now includes a proof of Lebesgue's differential theorem for all monotone functions. This is a beautiful topic which is not often covered. The treatment of surface measure and the divergence theorem in the fifth chapter has been improved. Loose ends from the discussion of the Euler-MacLauren in Chapter I are tied together in Chapter seven. Chapter eight has been expanded to include a proof of Carathéory's method for constructing measures; his result is applied to the construction of Hausdorff measures. The new material is complemented by the addition of several new problems based on that material.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Essentials of Integration Theory for Analysis (Graduate Texts in Mathematics Book 262). To get started finding Essentials of Integration Theory for Analysis (Graduate Texts in Mathematics Book 262), you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.