Read Anywhere and on Any Device!

Special Offer | $0.00

Join Today And Start a 30-Day Free Trial and Get Exclusive Member Benefits to Access Millions Books for Free!

Read Anywhere and on Any Device!

  • Download on iOS
  • Download on Android
  • Download on iOS

Foundations of Machine Learning (Adaptive Computation and Machine Learning)

Unknown Author
4.9/5 (19984 ratings)
Description:A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review.This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Foundations of Machine Learning (Adaptive Computation and Machine Learning). To get started finding Foundations of Machine Learning (Adaptive Computation and Machine Learning), you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
0262351366

Foundations of Machine Learning (Adaptive Computation and Machine Learning)

Unknown Author
4.4/5 (1290744 ratings)
Description: A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms.This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics.Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review.This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Foundations of Machine Learning (Adaptive Computation and Machine Learning). To get started finding Foundations of Machine Learning (Adaptive Computation and Machine Learning), you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
0262351366
loader